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Abstract

The steady subsonic flow past bodies of finite dimensions, when the stream is unbounded and uniform at infinity is considered.
The structure formed by the stationary points (points where both components of the acceleration vector vanishes), by the zero-level
of the components of the acceleration vector emerging from them and the body past which the flow occurs is studied. It is shown
that each of the above-mentioned lines must reach the surface of the body past which the flow takes place. This fact, in particular,
enables one to estimate the overall number of streamlines with zero curvature emerging from the stationary points in terms of the
number of zeros of the curvature of the streamlines on the body around which the flow takes place, including the branch points of
a dividing streamline. With a view to refining the above mentioned number of zeros, the known solution for the neighbourhoods
of the branch points of a streamline is considered and the singularity of the flow in the neighbourhoods of points of discontinuity
of the curvature of the wall around which the flow occurs is investigated. In order to illustrate the above, certain properties of the
flow past convex bodies are refined and a fairly broad class of so-called convex-concave bodies with zero angle of tapering of the
trailing edge is constructed and considered. It is shown that, for this body, there are not more than four zeros of the curvature of
the streamline and, as a consequence, there are no branch points of the isobars and isoclines in the flow field, including at infinity,
an infinitely distant point is the sole stationary point and, most important of all, in the case of the flow past the given bodies the
values of the circulation and the lifting force cannot vanish. The mathematical apparatus employed is based on the equations of gas
dynamics constructed earlier for certain combinations of the components of the acceleration vector.
© 2006 Elsevier Ltd. All rights reserved.

1. Zero-level lines of the components of the acceleration vector

Consider a plane potential subsonic flow past a body of a perfect gas (inviscid and non-heat-conducting), when
the stream is unbounded and horizontal at infinity. The flow is characterized by the existence of a dividing streamline
with two branching points t and d lying on the body. The dividing streamline reaches the body from infinity on the
left at the leading branch point t, where it divides into two branches, each of which is adjacent to the body past which
the flow occurs. These branches are again combined into a single dividing streamline at the trailing branching point
d which departs on the right to infinity. There is no more than one sharp edge with an angle 0 ≤ � < �/2 on the body
and, according to the Zhukovskii condition, when such an edge exists it is the trailing branch point d, while the leading
branch point t is in any case also a stagnation point. There are no other branch points, apart from t and d, in the flow
being considered and, consequently, there are also no stagnation points outside the body in the flow.
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In the plane of the potential (�, �), the flow being investigated is described by the equations1,2

(1.1)

Henceforth, � and � are the potential and the stream function, � is the density, q and � are the modulus and angle of
inclination of the velocity vector and M is the Mach number.

The principal geometrical objects of the investigation are the zero-level lines of the longitudinal component (along
a streamline) F and the transverse component (along the left normal to the stream line) G of the acceleration vector
and the stationary points F = G = 0. The functions F and G are related to the derivatives from system (1.1) as follows:

by which the choice of system (1.1) as the initial system is largely determined. Note also that the function G is identical,
apart from a positive factor, with the curvature of a streamline.

To study the lines F = 0 and G = 0, the equations3

(1.2)

are most suitable, with the new independent variables U and V:

(1.3)

We recall that system (1.2) is obtained by differentiating system (1.1) with respect to � and subsequent transformation
of the resulting inhomogeneous system into a homogeneous system using an algorithm4 based on the use of two-
parameter solutions. In the case under consideration, a helical flow, which is the superposition of a flow from a source
and a flow of the potential vortex type,5,6 will be such a flow. However, the relation between system (1.2) and helical
flow already follows from the fact that the obvious solution U = C1 = const, V = C2 = const also exactly gives a helical
flow.

Note also that the compatibility conditions of system (1.2) in the supersonic zone can be written in the form of the
so-called transport equations.2,3

When M < 1, the homogeneous system (1.2) is elliptic and, therefore,4 the functions U and V in the flow being
considered possess the property of monotonicity: each of these functions is monotonic along a level line of the other
function.

Here, it is opportune to define the level line more precisely.

1.1. Definition

We mean by a level line of the function U (the function V) a line U = const (V = const) for the continuation of which,
to be specific, the left-hand branch is chosen on passing a branch point.

In order to demonstrate the monotonicity properties of the functions U and V, we will write expressions for the
derivatives Ul and Vl which are calculated along the level lines of the functions V and U respectively3:

(1.4)

where � and � are the angles made by the level lines with the velocity vector.
The derivatives Vn and Un, calculated along the left-hand normals to the lines V = const and U = const respectively in

the domain of ellipticity can only vanish at isolated points. Otherwise, for example when the equality Vn = 0 is satisfied
along a certain segment of a line V = const, all four derivatives U�, . . ., V� must, in fact, be equal to zero, which is only
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possible if there is a helical flow in the whole domain. It follows from what has been said, from the definition of a level
line and from relations (1.4), that, along a level line V = const (U = const), the derivative Ul (the derivative Vl) does not
change its sign. However, it should be emphasized that, unlike isobars, isoclines and other level lines, the analysis of
which is based on the method of level lines,4,7–11an infinite set of closed level lines U = const �= 0 and V = const �= 0
exists in the subsonic flow domain being considered, when there are stationary points F = G = 0, which pass through
the above mentioned points (these are the points of indeterminacy of the functions U and V). In the case of a circular
bypass of a stationary point, the functions U and V take all values in the range from −∞ to +∞. This fact will be
demonstrated in greater detail below when considering stationary points. Note that the analysis of the lines U = const
and V = const presented earlier in Refs. 3,11 was solely restricted by the domains of unique definition of the functions
U and V.

The lines U = F = 0 and V = G = 0 occupy a special place among the set of level lines of the functions U and V. This
is associated, first of all, with the fact that no combination of components of the acceleration vector is monotonic along
each of these lines but only one of the components taken with a certain constant sign factor. The physical meaning of
these lines is quite clear and, what is more, in experiments in which the streamlines are visualized, the line V = G = 0
is readily overlooked as the geometrical locus of the points of inflection of the streamlines.

It is found that the analysis of the zero-level lines of the components of the acceleration vector is most effective if
the stationary points F = G = 0 are the initial points of the branches of the above-mentioned lines. We will therefore
now consider some fairly obvious properties of the above mentioned points.

2. Stationary points

In the subsonic flow being considered, there are two types of stationary points outside the boundaries of the body in
the flow. These are the branch points of the isobars and isoclines, which are located at a finite distance from the body
and at an infinitely distant point.

2.1. Branch point of isobars and isoclines

This point has been discussed in considerable detail (see Ref. 5 and other textbooks). Here, first of all, the dependence
of the number of lines F = 0 and G = 0 emerging from a branch point on the number of isobars and isoclines emerging
from this same point is of interest.

We shall make use of the method of “frozen” parameters for which, in an infinitelesimal neighbourhood of the
branch point being investigated in which a zero subscript is assigned to the parameters, we transform the initial system
(1.1) to a system of the Cauchy-Riemann type

(2.1)

where

The periodic solution at the branch point in the local system of coordinates (R, 	) in the (�, �) plane of interest has
the form

(2.2)

where

(2.3)

A and t* are certain constants and n is a positive integer.
Differentiating each of relations (2.2) with respect to �, we obtain

(2.4)
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Consequently, the point being investigated is regular when n = 1, one isobar and one isocline passes through it, and
the simultaneous vanishing of both components of the acceleration vector is excluded at this point. When n ≥ 2, the
point being investigated is a branch point at which, according to the more precise definition of a level line presented
above, contact (not intersection) of n isobars and n isoclines occurs or, what is the same thing, an even number of
2n isobars and 2n isoclines emerge from this point as well as an even number N = 2(n − 1) lines F = 0 and the same
number of lines G = 0. We shall call the even number N(N ≥ 2) defined in this manner the index of the stationary point.

In the case of a circular bypass of a small neighbourhood of a branch point the signs of the longitudinal acceleration
F strictly alternate in the lines G = 0 and, in the same way, the signs of the function G strictly alternate in the lines F = 0.

Substituting expressions (2.4) for z� and �� into relations (1.3) when N ≥ 2, we obtain the description of an infinite
set of closed level lines U = const �= 0 and V = const �= 0. In particular, when N = 2 in the physical plane in a small
neighbourhood of a stationary point, we have two infinite families of ellipses U = const �= 0 which touch at the stationary
point of the line U = 0 and two families of ellipses V = const �= 0 which touch at the same point of the line V = 0. We
emphasize that the existence of closed level lines in the neighbourhood of a stationary point does not contradict the
property of monotonicity. For example, for an appropriate choice of the bypass of the ellipse U = const �= 0 when
approaching the stationary point, the function V increases monotonically up to +∞ and, after passing this point, it also
decreases monotonically to −∞.

2.2. An infinitely distant point (IDP)

The properties of subsonic flows at a considerable distance from a body and, in particular, the asymptotic forms have
been investigated and discussed in a number of papers,1,2,10,12–15 although many questions still remain open. Here,
the problem solely consists of finding the number of zero lines of the components of the acceleration vector emerging
from an IDP or the constraints imposed on this number. We note at once that it follows from the periodic solution that
the required numbers are even.

The investigation of the structure of the level lines in the neighbourhood of an IDP depends very much on whether
the circulation � and the value of the lift force Y, which is linearly related to it, are equal to zero. When � �= 0, the
dividing streamline � = 0, which departs from the body into the flow, is a line of discontinuity of the potential � and, at
the same time in the (�, �) plane of the potential, a given branch of the streamline � = 0 will be a line of discontinuity of
the gasdynamic parameters. The use of the Cauchy-Riemann type system (2.1) to analyse an IDP when � �= 0 therefore
requires additional justification. However, it is just when � �= 0 that the flow in the neighbourhood of the IDP has been
studied most completely. So, at a considerable distance from the body, the expressions for �, q and �, apart from small
higher-order terms, have the form1,2,13–15

(2.5)

An analysis of these relations leads to the following conclusion: in the case of subsonic flow past bodies with a
non-zero circulation, two isobars and two isoclines emerge and four lines F = 0 and four lines G = 0.

When �= 0, relations (2.5) no longer hold. However, when �= 0, the flow dividing line � = 0 behind the body will
no longer be a line of discontinuity of the potential. Consequently, when �= Y = 0, there are no formal obstacles to the
use of system (2.1) to analyse of the structure of level lines in the neighbourhood of an IDP. In this case, the periodic
solution which is of interest is

(2.6)

where

A and t* are certain constants and n is a positive intger.
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The problem of constructing the asymptotic forms in the neighbourhood of an IDP involves the determination of
all three parameters A, t* and n. Here, only certain relations which the parameter n satisfies are of interest.

A value of n ≥ 2 corresponds to a periodic solution, for which a greater number of level lines emerge from an IDP
than when � �= 0. An analysis of solution (2.6) shows that 2n isobars and 2n isoclines and N0 = 2(n + 1) lines of zero
values of the components of the acceleration vector emerge from an IDP and, here, in the case of a circular bypass of
the IDP, the signs of the function F on the lines G = 0 strictly alternate as do the signs of the function G on the lines
F = 0.

We see that, both when �= 0 and when � �= 0, the number of zero-level lines of each of the components of the
acceleration vector emerging from an IDP is greater than the number of isobars and isoclines emerging from the IDP
while, in the case of a branch point located at an infinite distance from the body, the situation is exactly the opposite.

Finally, we will present the resultant relations for the numbers n and the indices N0 in an IDP:

Remark. It has been noted above that, when � �= 0, the flow in the neighbourhood of an IDP has been studied more
thoroughly than when �= 0. This is due to the fact that, when � �= 0, the first terms of the corresponding series can be
successfully expressed in terms of �, which also leads to solution (2.5). When �= 0, the first important terms of the
series are unknown in the general case with the exception of the special case of symmetric flow past a so-called “single
vertex” body and, in particular, a convex body for which the sole constant required is expressed in terms of the area
bounded by the streamline and its horizontal asymptote when the indicated streamline is moved upwards to infinity.10

At the same time, the series describing the flow in the neighbourhood of an IDP when �= 0 are much simpler than
when � �= 0, which is obvious from the following relations for the potential �1,12–15

Here, x and y are Cartesian coordinates, r =
√
x2 + y2, u = arctg y

x
, fnm(µ) and gm(
) are periodic functions to be

determined.
It is obvious that the series corresponding to �= 0 or, more accurately, the first non-zero term with an index m ≥ 1

can be used in the same way as solution (2.6) to determine the number of characteristic level lines emerging from an
IDP.

3. Stationary points and zero-level lines of the components of the acceleration vector

It follows from the preceding section that no less than one stationary point exists in the subsonic flow past a body
which is being considered. These are an IDP with an index N0 ≥ 4 and, possibly, j(j ≥ 1) branch points of the isobars
and isoclines, each with an index Ni ≥ 2 (i = 1, . . ., j) when j = 0, there are no branch points of the isobars and isoclines).
The stationary points, the zero-level lines of the components of the acceleration vector emerging from them and the
body in the flow are related by the following theorem.

Theorem 1. Each zero-level line of any of the components of the acceleration vector which emerges from a stationary
point, first, possesses the property that the other component of the acceleration vector outside the above-mentioned
point has constant sign, and, second, this line reaches the surface of the body in the flow. In other words, the body
surface is reached Ns = N0 + N1 +. . .+ Nj lines G = 0 and the same number of lines F = 0.

Proof. An even number N of zero-level lines of streamline curvature

(3.1)

emerge from a stationary point. In the circular bypassing of a stationary point, the lines (3.1), along which the function
U increases during the motion from the stationary point, alternate with the lines along which U decreases. To be specific,
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we consider a line (3.1) along which U decreases. According to relations (1.3), the function U for this line simplifies to
the expression U = (kz�)−1. Consequently, the product kz� is equal to zero at the stationary point and increases during
the motion from the stationary point along the line (3.1). Next, branch points of the streamlines and stagnation points
are excluded in the subsonic flow being considered outside the body surface and, consequently, outside the body in
the flow, the functions z and � are bounded in modulus and the derivatives z� and �� are therefore also bounded1 in
modulus outside the body (although the derivatives z� and �� can reach values of ±∞ on the body). In other words,
0 < z� < ∞, 0 < F < ∞ along the line (3.1), which completes the proof of the first part of the theorem.

The monotonic increase in the product kz� along the line (3.1) excludes its self intersection and the inequality z� < ∞
precludes a situation in which the function U initially decreases from +∞ to 0 and subsequently from 0 to −∞ during
the motion from the stationary point along the line (3.1) which, in its turn, precludes the line (3.1) from reaching any
stationary point, including the initial stationary point. Finally, we will assume that the line (3.1) breaks off at a certain
internal point of the flow w and consider a neighbourhood which may be as small as desired with its centre at the point
w and lying as a whole in the flow domain. Simple analysis of the behaviour of the function G in this neighbourhood
shows that an even number of points G = 0 exist in it, that is, apart from the point of intersection of the neighbourhood
with the line (3.1), at least one further point G = 0 exists. Letting the radius of this neighbourhood tend to zero, we
arrive at the refutation of the assumption which has been made.

Thus, the line (3.1) cannot self-intersect and form a closed loop, it cannot enter into another line which also includes
the initial stationary point and, finally, it cannot break, inside the flow domain. Consequently, this line must arrive on
the surface of the body in the flow. All that has been said can be automatically transferred to the other lines G = V = 0
and F = U = 0 which emerge from all the stationary points, which completes the proof.�

Remark.

1. We would hope that the properties of the lines F = 0 and G = 0 and the stationary points associated with them will
enable the possibilities of topological methods to be extended in hydrodynamics16 and, primarily, the method of
level lines, the foundations of which were laid down in Ref. 7.

2. The number Nf (the number Ng) of zeros of the function F (of the function G) on the body in the flow and the number
Ns introduced in the theorem are related by the inequalities Nf ≥ Ns, Ng ≥ Ns. These signs of the inequalities are
due to the fact that points F = 0 (G = 0) can exist on a body which are points of a local extremum of the function F
(of the function G). Moreover, points can exist on a body which are joined by the horseshoe-shaped lines F = U = 0
and G = V = 0 which do not contain the stationary points F = G = 0.

When investigating the flow past a number of known and newly constructed bodies, the inequality Ng ≥ Ns enables
one to obtain the restriction on the over-all index Ns of the stationary points and (or) the quantity j of stationary points
or to find the exact value of Ns. However, for this it is necessary to determine the number of zeros of the curvature of
the streamlines on the body in the flow and, what is more important, the number of lines G = V = 0 which relate the
body with the stationary points.

4. Zero levels of the curvature of streamlines on the body in the flow

We will now consider the determination of the number of zeros of the function G on the body using just the local
properties of the flows in the neighbourhoods of the branch points of the dividing streamline and, in the following
section, the discontinuity of the curvature.

We will consider a segment at of the dividing streamline which arrives on a smooth, kink-free segment of the
generatrix of the body in the flow (Fig. 1). In an infinitesimal neighbourhood of point t which is a stagnation point, the
flow is described by the equations for an incompressible fluid (the Mach number m in Eq. (1.1) is equal to zero) Apart
from an unimportant constant factor, this flow is described by the following relations in a polar system of coordinates
(R, 	) with its centre at the point t17

(4.1)

Here, R is the distance from point t and 	 is the polar angle, the initial value of which, to be specific, is chosen such
that 	 = � corresponds to the segment at.
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Fig. 1.

In other words, in a small neighbourhood of the stagnation point, semicircles correspond to the isobars and the straight
lines correspond to the isoclines emerging from the point t. Next, omitting the calculations involved in obtaining the
equations of the lines F = 0 and G = 0 from relations (4.1), we will present the main results.

Thus, in an infinitesimal neighbourhood of the point t, the segment at forms two right angles with the segments tb
and tc. The bisectrices of these angles are the lines F = 0, which are given with the numbers 2 and 4 in Fig. 1, where
the curvature of the streamlines is positive (negative) in line 2 (line 4). In turn, the lines G = 0 touch the streamlines at,
tb and tc at the point t. Regardless of the shape of the body in the neighbourhood of the stagnation point, the line G = 0,
which touches the dividing streamline, passes out into the flow domain. This line is given the number 1 in Fig. 1. The
possibility of other lines G = 0 emerging from point t depends on the curvature of the segments of the streamlines tb
and tc. On account of this, we will consider three cases.

Case 1. The segments tb and tc convex towards the flow direction (Fig. 1a).The value of the function G in the segment
tb is negative and, in line 2, it is positive. Consequently, the line G = 0, which is given the number 3, emerges between
lines 2 and tb into the flow domain along the tangent to tb. The line G = 0, labelled with the number 5, also emerges
into the flow domain along the tangent to the line tc. Finally, three lines G = 0, labelled with the numbers 1, 3 and 5 in
Fig. 1a, emerge into the flow domain from the stagnation point t in the case being considered.

Case 2. The segments tb and tc are concave towards the flow direction (Fig. 1b). In this case, the function G has a
single sign in the segment tb and in the line 2. The same holds for the segments tc and 4. Consequently, just a single
line G = 0 (line 1 in Fig. 1b) emerges into the flow domain.

Case 3. This is an intermediate case when the wall on one side of the stagnation point is convex and on the other side
is concave. Without entering into a discussion of the possibility of the realizing such a situation when the branch point
of the dividing streamline coincides with the point of inflection or, what is more, with the point of discontinuity in the
sign of the curvature of the generatrix of the body, we merely note that, if such a situation occurs, two lines G = 0, as,
for example, lines 1 and 5 in Fig. 1c, emerge from the above-mentioned point into the flow domain in this case.

If the trailing branch point d from which the dividing streamline departs from the body is situated on a smooth,
kink-free segment of the body, then everything that has been said above concerning the relative arrangement of the
streamlines and the lines G = 0 and F = 0 in the neighbourhood of the leading branch point t holds for it. If the trailing
branch point is a spinode with a non-zero angle, then, in this case, it will also be a stagnation point and, as analysis
shows, the dependence of the number of lines G = 0 emerging from it on the curvature of the adjacent segments of the
body is the same as when there is no spinode. In this case, three lines G = 0 emerge from the rear stagnation point if
both of the adjacent segments are turned in a convex sense towards the flow direction, only one line G = 0 if the two
segments are concave with respect to the flow, and two lines G = 0 if one of the segments is convex and the other is
concave.

5. Singularity of the flow in the neighbourhood of a discontinuity point in the curvature of the wall of the
body in the flow

We shall consider two cases.
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Fig. 2.

5.1. The case when the discontinuity point in the curvature is neither a branch point of a streamline nor a corner
point of the wall

In this case, the gas-dynamic parameters q and � are continuous in the neighbourhood of point c, and the velocity q is
subsonic and is non-zero. However, the curvature of the wall on the two sides of the point c has different, but finite, values.

The parameters q and � are continuous in the neighbourhood of point c and, therefore, a neighbourhood of point
c, at each point of which q and � differ by as small an amount as desired from qc and �c, can be chosen, and we
can therefore assume that the curvature of the streamlines in this neighbourhood is identical to the function G apart
from a positive constant factor. The range of variation of the function G in the neighbourhood being considered is
determined by the discontinuity in the curvature of the wall at point c, that is, it is a finite quantity. In order to find
asymptotic expressions for the functions F and G in a polar system of coordinates, it is advisable to use system (1.2)
as the initial system, assuming that the factor k is constant and equal to kc in the neighbourhood of point c. With these
assumptions, introducing the modified stream function φ = √

kcψ, we can transform system (1.2) into the following
Cauchy-Riemann type system:

Using relations (1.3), we can represent the latter system in the form

In turn, this system is equivalent to a further Cauchy-Riemann type system

which, if the expressions F = z�q3�−1 and G = ��q3 from Section 2 are taken into account, is equivalent to the system

Finally, we will rewrite the resulting system in the more convenient polar system of coordinates associated with the
point c,

(5.1)

The expressions for R and 	 are given by formulae which are analogous to formulae (2.3) with the zero subscript
replaced by the subscript c.

In order to investigate the singularities in the neighbourhood of point c, we will formulate and consider the following
model problem.

Problem 1. A flow from left to right occurs on the wall in the neighbourhood of point c (Fig. 2a). Further to the left
of point c, the transverse component of the acceleration vector is constant and equal to G1 and, more to the right of
this point G = G2, G1 �= G2. It is required to find the functions F = F(R, 	) and G = G(R, 	).
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Fig. 3.

To solve this problem we will consider the upper half-plane of the (�, �) plane shown in Fig. 2 in which G = G1
when 	 = � and G = G2 when 	 = 0. In the case of the given boundary conditions, the solution of system (5.1) has the
form

In other words, if, on moving along a streamline, the discontinuity G2 − G1 is positive (negative) at point c, then,
on approaching point c from any direction, the longitudinal acceleration increases (decreases) logarithmically in an
unbounded manner. In the physical plane in the neighbourhood of point c, the lines F = const form a family of semi-
ellipses, and the lines G = const form a sheaf of lines where only when the quantities G1 and G2 have different signs
will one of the lines of this sheaf be the line G = 0.

5.2. The case when the discontinuity in the curvature (but not in the angle of inclination of the velocity vector)
occurs at the trailing branch point d

Model Problem 2 corresponds to this case.

Problem 2. Touching of the upper and the lower generatrices occurs at point d in Fig. 2b and the values of the curvature
of the two generatrices are finite at point d, but not equal to one another. At point d, the streamlines corresponding
to the upper and lower generatrices combine into the dividing streamline which departs to the right. In this case, the
model problem is formulated as follows: G = G1 when 	 = � and G = G2 when 	 = -�. The solution of system (5.1)
takes the following form

It is obvious from the formulation of the problem that G1 > G2. Consequently, on approaching point d from any
direction, the function F increases logarithmically in an unbounded manner. Finally, if G1 and G2 have the same sign,
such as a negative sign, for example, as in Fig. 2b, then, in this case, not a single line G = 0 emerges from point d.

5.3. The case when point c in Fig. 2a is a point of inflection but not a point of discontinuity in the curvature

In this case, the problem of determining the number of lines G = 0 emerging from point c and the sign of the
acceleration at this point becomes much more difficult and its solution in the general case may depend on the whole
flow pattern. Practically all that has been said is also transferred to point d in Fig. 2b.

6. Flow past a body with a small number and with the minimum possible number of zeros of the function G

According to Theorem 1, there can be no less than four zeros of the function G and, at the same time, the existence of
bodies in the case of four zeros of the function G is not obvious a priori. An example of such a body will be considered
at the end of this section. For the present, we shall dwell on the flow past convex bodies.

Theorem 2. In the case of a flow past smooth convex bodies (Fig. 3) with two branch points of the dividing streamline
t and d, for non-zero values of the circulation � there are only two stationary points with a combined index Ns = 6.
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Fig. 4.

These are a IDP with the index N0 = 4 and a single branch point of the isobars and isoclines with the index N1 = 2. As
the circulation tends to zero, the branch point moves away from the body and, in the case when the circulation is zero,
the two stationary points merge into a single IDP with an index N0 = 6.

Proof. In Fig. 3, at and dh are segments of the dividing streamline. Six lines G = 0 emerge from the surface of the body
being considered into the flow domain: three each from points t and d. The plus and minus signs indicate the sign of the
function F along the corresponding line G = 0. In the case of non-zero circulation, the solution in the neighbourhood
of the IDP is described by relations (2.5) and, here, four lines G = 0 (the index N0 = 4) arrive from the IDP onto the
body. For two of them F > 0 and for the other two F < 0. Consequently, only one stationary point (the branch point of
the isobars and isoclines) with an index N1 = 2 exists at a finite distance from the body and a further two lines G = 0
arrive at the body from this point along one of which F > 0 and along the other F < 0.

Further, as was noted above, the index of the IDP N0 ≥ 6 in the case of zero circulation. However, only six lines G = 0
can arrive at the body being considered. Consequently, in the case being investigated of a flow with zero circulation
N0 = 6, there are no branch points at a finite distance from the body, which completes the proof.�

Corollary. In the case of flow past a convex body with zero circulation, the six lines G = 0 which arrive at the body
from infinity divide the flow domain into six subdomains in which the curvature of the streamlines has constant sign.

Remarks.

1. Theorem 2 essentially generalizes the results in Refs. 9,10 in which it is proved that, for symmetrical flow past
convex bodies, there are no branch points of the isobars and isoclines, and this also means that there are no stationary
points beyond the IDP.

2. The results of the theorem also transfer to a number of other bodies from the surfaces of each of which six lines
G = 0 also emerge into the flow domain. Examples of such bodies are shown in Fig. 4. Here, as in Fig. 3, the plus
and minus signs on the lines G = 0 correspond to the sign of the function F, and the same signs on the segments of
the body correspond to the sign of the function G. Note also that the well-known Zhukovskii profile refers to the
class of bodies shown in Fig. 4c.

6.1. Flow past bodies with the minimum possible number of zeros of the function G

It is clear from the properties of an IDP considered above that no less than four lines G = 0 arrive from the IDP at
the body in the flow and the index N0 = 4 corresponds to flow with non-zero circulation. It has already been noted that
the existence of bodies with a number of zeros of the function G equal to four is not obvious a priori. Nevertheless, it
turns out that such a body can be constructed using the results of the two preceding sections.

Consider the following convex-concave body with a zero vertex angle at the trailing branch point (Fig. 5a and b).
Here, at and dh are segments of the dividing streamline. The segment cd of the generatrix of the body is concave
and the remaining part of the body is convex. The values of the curvature are finite on both sides of point c, they are
non-zero and have different signs. Contact of the upper and lower generatrices, the values of the curvature of which
are finite at point d, are different from one another and from zero and have the same sign, occurs at this point. To be
specific, this sign has been taken as being negative in Fig. 5, which is not essential.

It follows from the properties of the branch points of the dividing streamline and the discontinuity of the curvature,
which have been investigated above, that lines G = 0 only emerge from the surface of the body being considered into
the flow domain from the stagnation point t and from point c of discontinuity of the curvature. The segments of the
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Fig. 5.

lines G = 0 associated with points t and c are shown in Fig. 5a and b where the plus and minus signs indicate the sign
of the function F. An analysis of the above-mentioned lines G = 0 leads to the following assertions.

Theorem 3. Continuous flow past a concave-convex body with non-identical branch points t and d of the dividing
streamline (Fig. 5) is only possible when the leading branch point t is located on the convex part of the generatrix, as
in Fig. 5a, and the flow is then characterized by non-zero values of the circulation and lift force and the existence of
just a single stationary point, which is precisely a stationary IDP with N0 = 4. As a consequence, the four lines G = 0,
arriving at the body from infinity, divide the whole of the flow domain into four subdomains in which the curvature of
the streamlines has a constant sign.

Proof. Positioning of the point t in the concave segment, as in Fig. 5b as well as at the point c of discontinuity in the
curvature leads to the fact that the number of zeros of the function G is equal to two, which contradicts the inequality
N0 ≥ 4. Consequently, point t is located in a convex segment, as in Fig. 5a and the number of zeros of the function G
is equal to four. Consequently, the values of the circulation and the lift force are non-zero, four lines G = 0 arrive at the
body from the IDP (the index of the IDP N0 = 4) and there are no stationary points other than the IDP.�

Remarks.

1. Attempts to prove Theorem 3 solely using an analysis of the isobars and isoclines do not lead to success, which
yet again speaks of the new possibilities provided by an analysis of the zero-level lines of the components of the
acceleration vector.

2. Theorem 3 leads to a number of paradoxes. We shall dwell on one of them. For this purpose, we consider the flow
past a symmetrical Zhukovskii profile18–20 within the framework of flows of an incompressible fluid. In the case
of this profile, the number of zeros of the function G is equal to six, which can be seen from Fig. 4c. When the
parameter responsible for the thickness of the Zhukovskii profile tends to zero, we obtain a profile which is as close
as desired to an arc of a circle. By choosing the angle of attack for each of these profiles, a flow with zero values of
the circulation and lift force and with an IDP index N0 = 6 can be obtained for which the six lines G = 0 join the IDP
and the profile. At the same time, a profile, which may be as close to an arc of a circle as desired, can be constructed
on the basis of the concave-convex body shown in Fig. 5a. However, for any of these profiles, the number of zeros
of the function G is equal to four, � �= 0, Y �= 0. We thereby arrive at a situation when fundamentally different flow
patterns correspond to two profiles, which may be as close as desired. This and a number of other examples, the list
of which can be continued, require individual consideration.
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